Principal determinants of toxicity reduction by de-oiled soya using multivariate statistics: principal component analysis and multiple linear regression analysis
نویسندگان
چکیده
منابع مشابه
Compression of Breast Cancer Images By Principal Component Analysis
The principle of dimensionality reduction with PCA is the representation of the dataset ‘X’in terms of eigenvectors ei ∈ RN of its covariance matrix. The eigenvectors oriented in the direction with the maximum variance of X in RN carry the most relevant information of X. These eigenvectors are called principal components [8]. Ass...
متن کاملCompression of Breast Cancer Images By Principal Component Analysis
The principle of dimensionality reduction with PCA is the representation of the dataset ‘X’in terms of eigenvectors ei ∈ RN of its covariance matrix. The eigenvectors oriented in the direction with the maximum variance of X in RN carry the most relevant information of X. These eigenvectors are called principal components [8]. Ass...
متن کاملStatistics using R (spring of 2017) Computer lab: Multivariate Plots, Principal Component Analysis and Discriminant Analysis
Consider a data matrix X of real numbers with n rows and k columns. We view the rows X1, . . . ,Xn as independent samples from a multivariate distribution with mean vector μ and covariance matrix Σ. Can we visualize X in some easy way? One possibility is to use heat plots (also known as heat maps). These are constructed as follows: think of a rectangular matrix in which column (or row) standard...
متن کاملFeature Dimension Reduction of Multisensor Data Fusion using Principal Component Fuzzy Analysis
These days, the most important areas of research in many different applications, with different tools, are focused on how to get awareness. One of the serious applications is the awareness of the behavior and activities of patients. The importance is due to the need of ubiquitous medical care for individuals. That the doctor knows the patient's physical condition, sometimes is very important. O...
متن کاملDimension Reduction by Local Principal Component Analysis
Reducing or eliminating statistical redundancy between the components of high-dimensional vector data enables a lower-dimensional representation without significant loss of information. Recognizing the limitations of principal component analysis (PCA), researchers in the statistics and neural network communities have developed nonlinear extensions of PCA. This article develops a local linear ap...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Ecology and Environmental Research
سال: 2017
ISSN: 1589-1623,1785-0037
DOI: 10.15666/aeer/1503_17171737